
IEEE/ASME TRANSACTIONS ON MECHATRONICS, VOL. 28, NO. 2, APRIL 2023 873

Unifying Control Architecture for Reactive
Particle Swarms

Shae T. Hart , Graduate Student Member, IEEE, and Christopher A. Kitts , Senior Member, IEEE

Abstract—Swarm control strategies allow for decentral-
ized control of many simple robots to perform collective
behaviors based on local interactions. Despite the broad
applications of swarm robotics, there lacks a generalized
and unified set of control equations for swarms. First, this
work presents a novel mathematical control law for decen-
tralized velocity control of planar, homogeneous swarms
called reactive particle swarms (RPS). The architecture uni-
fies the development of new RPS behaviors. The weighted
summation of simple base behaviors and external com-
mand inputs form complex composite behaviors. Second, a
series of simulated and on-hardware case studies demon-
strate the utility and flexibility of the architecture. Third, this
work establishes a library of verified RPS base behaviors.

Index Terms—Control design, control system synthe-
sis, decentralized control, hardware-in-the-loop simulation,
multirobot systems, swarm robotics, velocity control.

NOMENCLATURE

ACR Artificial communication range.
Ci(dl) ACR matrix for robot i.

CM Center of mass.
Di Normalization matrix for robot i
dij Distance between robot i and j.
dl Specified ACR for trial.
fb Weighting function.

N Number of robots in the swarm.
N Number of robots within ACR.
kb Base behavior scaling constant.
ku External control input scaling constant.
�ri Aggregate relative position vector.
�uui External control input for robot i.
�vbi Base behavior command velocity for robot i.
�vci Composite command velocity for robot i.
Wi(fb) Weighting matrix defined by function fb.
�xi Pose of robot i.

Manuscript received 20 October 2021; revised 23 June 2022 and
18 August 2022; accepted 18 September 2022. Date of publication 10
October 2022; date of current version 18 April 2023. Recommended by
Technical Editor Jiafu Wan and Senior Editor Hong Qiao. (Correspond-
ing author: Shae T. Hart.)

The authors are with the Department of Mechanical Engineer-
ing, Santa Clara University, Santa Clara, CA 95053 USA (e-mail:
sthart@scu.edu; ckitts@scu.edu).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TMECH.2022.3211155.

Digital Object Identifier 10.1109/TMECH.2022.3211155

I. INTRODUCTION

THE field of multirobot systems (MRSs) is a promising
area of robotic research. MRSs can improve performance

over single-robot systems, potentially accomplishing challeng-
ing tasks impossible for single-robot systems. An MRS can
be classified by its flexibility and robustness. Flexibility is the
ability to adapt to environmental changes, while robustness is
the tolerance to failures in the robots in MRS [1].

A subset of MRS is robotic swarms. Swarms consist of a large
number of autonomous, generally homogeneous robots using
decentralized control through the use of simple rules. Compared
to other MRS approaches that are more deliberate in their
formation control and task coordination, swarm technology is
considered advantageous for flexibility, scalability, robustness,
and economy [2], [3]. In addition to being flexible in their
response to their environment, swarms use lightweight, simple
algorithms, allowing them to be both highly scalable in number
and adaptable to the addition and removal of many robots [4],
[5]. Swarm robots are considered interchangeable if they have
the same capacity. This idea, coupled with swarms’ ability
to scale in number, reduces the overhead for handling robot
failures making swarms more robust [1]. Robots should have
streamlined hardware, including memory, computation power,
and communication range making them inexpensive to produce
and more economical [6].

The central theme of swarm robotics is simple, interchange-
able robots with simple behaviors. However, the field lacks
consensus about what is “simple” and whether all robots should
be homogeneous or fall into a few categories [7]. Additionally,
some swarms emphasize reactivity while other swarms allow
for substantial computational delays for social deliberation.
Reactivity enables robots to respond quickly to the environment,
while social deliberation focuses more on the long-term goal.
Both approaches are valid for different applications [1].

Swarm robotics has four primary categories: 1) Supervi-
sory swarms, focusing on leader–follower hierarchical organi-
zation [2], [8], 2) consensus swarms, using consensus filtering to
help the swarm reach a consensus about the desired behavior [9],
[10], 3) swarm intelligence, trying to find optimal behaviors [4],
[11], and 4) reactive particle swarms (RPSs), focusing on simple
and reactive algorithms.

RPS, used in our work, consist of many homogeneous robots.
The control algorithm should be scalable, preferably mathemat-
ical, with lightweight, explainable, and reactive behaviors that
do not require consensus filtering or a hierarchy of robots. RPS

1083-4435 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Santa Clara University. Downloaded on June 25,2024 at 15:04:35 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-1259-7954
https://orcid.org/0000-0001-8078-9360
mailto:sthart@scu.edu
mailto:ckitts@scu.edu
https://doi.org/10.1109/TMECH.2022.3211155

874 IEEE/ASME TRANSACTIONS ON MECHATRONICS, VOL. 28, NO. 2, APRIL 2023

Fig. 1. Control architecture for single RPS robot.

algorithms should not require global knowledge to work and
do not store past swarm state information because this leads
to nonreactive control. RPS behaviors are based on the relative
positions of robots within a limited communication range and
use this information to accomplish simple behaviors like stable
aggregation, collision avoidance [12], [13], [14], coverage [15],
[16], formation control [13], [17], [18], [19], and gradient esti-
mation [17], [18]. RPSs use the superposition of multiple simple
behaviors to accomplish more complex tasks like cooperative
hunting: a combination of formation control, obstacle avoidance,
and target tracking [12].

While the control equations used in previous RPS research
are mathematically very similar, there lacks a unifying control
architecture that ties together their mathematics. The devel-
opment of a unified framework is the primary motivation for
this article. Such a unified framework would not only unite
the existing behaviors but streamline the development of novel
behaviors. In literature, Mesbahi and Egerstedt [16] present the
most developed RPS control architecture. Their work presents
methods using graph theory for analyzing the connections in
stationary networks and mobile robots. The robot’s command
velocity is calculated as the weighted sum of the relative posi-
tion vectors between robots. Different behaviors are designed
by weighting the relative position vectors differently. Mesbahi
and Egersted’s method has been used for formation control,
rendezvous problems, the containment problem [16], and main-
taining connections with different barrier functions [20].

McLurkin proposed developing a library of base swarm be-
haviors [15]. Once created, base behaviors are superimposed
to achieve more complex behaviors. When base behaviors are
superimposed, certain base behaviors can be emphasized over
others to control the swarm’s performance. This plug-and-play
design concept allows for the rapid development of novel com-
binations of base behaviors.

The primary contribution of this article is the presentation
of the RPS control architecture, which is based on a unified,
compact set of mathematics. This is accomplished through the
extension of Mesbahi and Egersted’s mathematics and the incor-
poration of McLurkin’s plug-and-play approach. This architec-
ture forms simple base behaviors as weighted sums of the relative
position vectors between robots, and more complex composite
behaviors are created as weighted sums of base behaviors. As

a second contribution, this architecture’s versatility is demon-
strated by implementing a variety of swarm behaviors through
a series of simulated and hardware-in-the-loop case studies.
A third contribution consists of establishing a library of base
behaviors that allow a control engineer to intentionally design
and manipulate how the RPS performs by selecting specific
behaviors and blending them with others through the scaling
constants.

The rest of the article is arranged as follows. Section II
examines the two layers of the control architecture. Then, the
architecture’s flexibility is demonstrated through a series of
simulated and hardware case studies. Section III specifies design
and assumptions used in the case studies. Sections IV, V, and VI
present a series of case studies. Finally, Section VII summarizes
the contributions of this work.

II. RPS CONTROL ARCHITECTURE

The following section outlines the planar RPS control archi-
tecture and its two levels, as shown in Fig. 1. In this block
diagram, the pose of robot i, �xi, is used along with the other
swarm robots’ poses, �xj’s, to determine the relative position
vector, �ri. The RPS controller for robot i uses this relative
position vector and external control inputs, �uui, to generate a
velocity command for the robot.

The behavior layer is the lower level of the RPS controller and
defines the control equation for a base behavior. Base behaviors
are formed as the weighted sum of the relative position vectors
between robots. The upper level is the composite layer, which
defines the control equation for composite behaviors. Composite
behaviors are designed as weighted sums of base behaviors and
external inputs. For example, a simple flocking algorithm could
include a base behavior of attracting toward the center of mass
and an external input of go-to coordinates.

A. Behavior Layer Command Equations

This section describes the governing equation for the behavior
layer, which calculates the command velocity for each base
behavior. A reference vector is calculated as the weighted sum
of a subset of the relative position vectors to the other robots in
the swarm, using the weighting function fb. Then, the reference
vector is rotated by the angle θb to define the command velocity
for the base behavior. Given this approach, the base behaviors
are defined as a weighting function, fb, and angle, θb pair. The
command velocity, �vbi, for the bth RPS base behavior for robot
i is calculated in (1).

�vbi = K(θb)Wi(fb)Ci(dl)Di�ri. (1)

In (1), �ri is the aggregate relative position vector, Di is the
normalization matrix, Ci(dl) is the artificial communication
range matrix for artificial communication range dl, Wi(fb) is
the weighting matrix calculated by the weighting function fb,
and K(θb) is a rotation matrix using angle θb. The subsequent
paragraphs will discuss the details of each term.

Starting on the right-hand side of (1), �ri ∈ R2N is the aggre-
gate relative position vector which contains the relative position
vectors pointing from robot i to all N robots in the swarm, �rij .

Authorized licensed use limited to: Santa Clara University. Downloaded on June 25,2024 at 15:04:35 UTC from IEEE Xplore. Restrictions apply.

HART AND KITTS: UNIFYING CONTROL ARCHITECTURE FOR REACTIVE PARTICLE SWARMS 875

If a robot is outside the communication range from robot i, it is
assumed to be infinitely far away at coordinates [∞ ∞]T . The
reason this is valid will be explained later in this section when
discussing the Ci(dl) matrix.

�ri =
[
�ri1 �ri2 . . . �riN

]T
. (2)

Next, matrixDi ∈ R2N×2N is the normalization matrix. Here
dij is the distance between robot i and robot j. Di is expressed
using Iverson bracket and set notation in (3). This diagonal
matrix normalizes the relative position vectors, �rij , to relative
unit vectors, ûij , as in (4).

Di = diag

({
[[(j �= i)]]

1
dij

I2

}N

j=1

)
(3)

[
ûi1 ûi2 . . . ûiN

]T
= Di�ri. (4)

Next, matrix Ci(dl) ∈ R2N×2N is the artificial communica-
tion range matrix for robot i. This diagonal matrix has elements
defined in terms of dl, a constant distance parameter defined for
the swarm. The equation for Ci(dl) is expressed in (5).

Ci(dl) = diag

(
{[[(j �= i) ∧ (dij ≤ dl)]]I2}Nj=1

)
. (5)

The matrix Ci(dl) acts as a selection matrix. The product
Ci(dl)Di�ri produces a 2N long vector containing the relative
unit vectors pointing from robot i to all other robots within
a communication range of dl. For a robot j that is beyond
a distance dl from robot i, including robots that are out of
communication range, the resultant vector is the zero vector
[0 0]T . Therefore, dl acts as an artificial communication range,
ACR. For this to be valid, dl must be less than or equal to the
actual communication range of the robots.

Next, a reference vector, �vri, is calculated as a weighted sum
of the unit vectors found by Ci(dl)Di�ri, as shown in (6)–(8).
Instead of using scalar weights, the unit vectors are premultiplied
by matrices, Wj .

�vri =
[
Wi1 Wi2 . . . WiN

]
Ci(dl)Di�ri (6)

=
[
fb(i, 1) fb(i, 2) . . . fb(i,N)

]
Ci(dl)Di�ri (7)

= Wi(fb)Ci(dl)Dl�ri. (8)

Each Wij ∈ R2×2 is calculated using a weighting function
fb(i, j). The weighting function is a mathematical equation that
is a function of swarm state, sensor readings, and similar infor-
mation, returning a weight matrix for the pair of robots. When
augmented together, the N matrices form the weighting matrix
Wi(fb) ∈ R2×2N . The behavior of the swarm can be changed
by weighting vectors differently. While not explicitly stated in
the weighting functions, fb(i, j) = 02 for robots that are outside
communication range. This convention prevents ambiguity in
the evaluation of the weighting function.

For example, the weighing function, expressed in (9), calcu-
lates the reference vector pointing from robot i to the local center
of mass, CM. In this equation, N is the number of robots within

the ACR of robot i. Conversely, the weighting function in (10)
uniformly weights all robots within the ACR, finding a reference
vector parallel to the average of the relative unit vectors. The
reference vector for uniform weighting is less influenced by
outlier robots far from the swarm than the CM reference vector.

fCM(i, j) =
dij
N

I2 (9)

funiform(i, j) = I2. (10)

The final matrix in (1),K(θb), is a rotation matrix and controls
how robot imoves relative to this reference vector, using θb. The
equation for K(θb) is expressed in (11).

K(θb) =

[
cos θb − sin θb

sin θb cos θb

]
. (11)

Returning to the CM reference vector, we consider how
changing θb changes robot i’s motion. When θb is 0 deg, the
robot will move along the reference vector toward the local CM,
while if θb is 180 deg, the robot will move away from the local
CM. When θb is 90 or 270 deg, the robot will orbit the CM.
The robots orbit in a clockwise manner when θb = 90 deg and
counter-clockwise for θb = 270 deg.

In conclusion, (1) calculates the command velocity for a base
behavior using a weighting function, fb, and angle, θb.

B. Composite Layer Command Equation

The behavior layer for robot i calculates the command ve-
locity for each base behavior in a composite behavior. Then,
the composite layer calculates the composite command velocity,
�vci, as the weighted sum of the unit vectors of the base behavior

command velocities as given in (12).

�vci =

p∑
b=1

kb
�vbi

||�vbi|| +
q∑

u=1

ku
�uui

||�uui|| . (12)

Here there are p base behaviors with their associated command
velocities, �vbi, and q external control inputs, �uui. The external
control inputs allow external controllers to influence the motion
of robots. These external inputs can be trajectory following com-
mands, go-to coordinates commands, and similar commands.

In this equation, the scaling constants, kb and ku, emphasize
certain base behaviors over others. These scaling constants must
be positive and satisfy the constraint equation given in (13).
When this constraint is satisfied, the scaling constants represent
what percent of the total composite behavior each behavior or
control input contributes. Behaviors associated with higher scal-
ing constants will dominate the performance of the composite
behavior over those with lower scaling constants.

p∑
b=1

kb +

q∑
u=1

ku = 1 kb > 0 ku > 0 (13)

C. Summary of RPS Control Architecture

In summary, Fig. 1 shows the control architecture for RPS
with the RPS controller highlighted in gray. First, the relative
position vector,�ri, is calculated from the poses of the robots. The
composite layer then passes the necessary pairs of weighting

Authorized licensed use limited to: Santa Clara University. Downloaded on June 25,2024 at 15:04:35 UTC from IEEE Xplore. Restrictions apply.

876 IEEE/ASME TRANSACTIONS ON MECHATRONICS, VOL. 28, NO. 2, APRIL 2023

Fig. 2. One of the robots used by SBS for hardware trials.

functions and angles, (fb, θb) for each base behavior to the be-
havior layer. At the behavior layer, the RPS controller calculates
each base behavior’s velocity commands, �vbi, using (1). Then,
the composite layer uses (12) with the scaling constants, k,
that are constrained by (13), and external control inputs, �uui,
to calculate the final command velocity, �vci. Robot i executes
this velocity command, leading to the updated pose for robot
i, �xi.

III. CASE STUDY DESIGN

The subsequent three sections use a series of case studies to
explore the RPS Architecture. These case studies are designed
to establish a library of RPS behaviors based on existing swarm
behaviors in the literature and highlight aspects of the RPS
architecture. Since the focus of this article is on high-level
control, the case studies use simple holonomic robots for gen-
erality instead of one specific type of nonlinear robot. Santa
Clara University’s swarm behavior simulator (SBS) was used to
perform the case studies [21]. SBS uses Simulink for the rapid
design of swarm behaviors. Evaluation of these behaviors is
then supported via numerical simulation or through the control
of real hardware robots. Simulation supports the inclusion of
robot dynamics, swarm sizes of up to hundreds of robots, and
the ability to perform bulk simulations for a behavior using
randomized initial conditions to evaluate behaviors statistically.
The hardware platform uses up to 12 custom omnidrive robots,
shown in Fig. 2, that operate within a 75-square meter workspace
that uses an Optitrack system for pose estimation. The specifics
of the robots and the testbed are discussed in [22].

The robots moved at a constant speed of 0.1 m/s. This speed
was selected based on the robot dynamics used in SBS to avoid
saturating the wheel speeds. In each case study, the simulation
times were selected based on the expected distances the robots
would travel for that behavior.The ACR for each case study was
generally set to be large enough to cover the entire workspace,
allowing all robots in the field to be used to demonstrate the
behavior clearly. The only exception is in Section IV-A which
studies how the limited ACR affects the behavior performance.

To avoid collisions, SBS used a common obstacle avoidance
function. If two robots were within some set distance of each
other, dOA, the velocity command was calculated using (14),
instead of (12). In each sim, dOA is at least 0.1 m because that
is how far each of the wheels is from the center of the robot for

TABLE I
LIST OF INVESTIGATIVE SIMULATIONS FOR BASE BEHAVIORS

TABLE II
LIST OF INVESTIGATIVE SIMULATIONS FOR COMPOSITE BEHAVIORS

the simulated and hardware robots. Similarly, some case studies
presented require a boundary to contain the robots. When the
robot was on the boundary, the velocity command was normal
to the boundary, pointing inward. Otherwise, the commanded
velocity followed that in (12).

vOA = [[dij ≤ dOA]]
−1

d−4
ij

�rij (14)

As weighting functions are presented, they are analyzed for
behaviors with θb = 0 or 180 deg as in Section IV and then with
θb = 90 or 270 deg, as in Section V. Then, Section VI presents
two composite behaviors case studies. For some case studies,
multiple simulations were performed to verify the weighting
function behavior using performance parameters. The perfor-
mance parameter’s mean and standard deviation (SD) were
reported for single batches of simulations. Multiple sets of
simulations were performed for specific case studies to inves-
tigate different aspects of the behavior. If there were only two
distributions to compare, then a t-test was performed, which
returns a p-value. A p-value less than 0.05 indicates that the
distributions are different. If more than two sets of simulations
were performed, a one-way ANOVA calculated a p-value for
the distributions of performance parameters. If p < 0.05, then
at least one of the distributions of performance parameters is
significantly different from the others, and a post hoc comparison
is required. The Tukey–Kramer post hoc test was used, which
returns a p-value for each pair of batch simulations. Again, if this
value is less than 0.05, then the two distributions of performance
parameters are statistically different. For all analyses, outliers
were defined as 1.5 times the interquartile range above the 75th
percentile or below the 25th percentile.

Table I summarizes the simulation parameters used for batch
simulations for the base behavior case studies. Table II summa-
rizes the parameters for composite behavior case studies.

IV. BASE BEHAVIOR CASE STUDIES WITH θb = 0 OR 180 deg

This section explores how weighting functions perform when
moving parallel to the reference vector. Attract behaviors move

Authorized licensed use limited to: Santa Clara University. Downloaded on June 25,2024 at 15:04:35 UTC from IEEE Xplore. Restrictions apply.

HART AND KITTS: UNIFYING CONTROL ARCHITECTURE FOR REACTIVE PARTICLE SWARMS 877

Fig. 3. Trajectories for (a) Universal attract with N = 15. (b) Universal attract with N = 4. (c) CM attract with N = 4.

along the reference vector using θb = 0 deg while disperse be-
haviors move along the negative of the reference vector using
θb = 180 deg.

A. CM and Uniform Weighting Functions

The first case study uses the two weighting functions intro-
duced in Section II: 1) Center of mass (CM) weighting as in
(9) and 2) uniform weighting as in (10). These behaviors are
adapted from the behaviors presented in [14].

Next, three simulations demonstrate the nuances in these two
formulations. First, 15 robots are simulated over 500 s using
uniform attraction as in (10) and θb = 0 degwith an ACR of 50 m
and a dOA of 5 m. Fig. 3(a) plots the swarm trajectory. Because
the initial conditions result in some robots being outside of ACR
of the others, two groups form. The robots settle, minimizing the
distances between each other while honoring the dOA set.

Second, Fig. 3(b) and (c) presents the trajectories for two
simulations demonstrating the difference between uniform at-
traction and CM attraction, for the same initial conditions. The
four robots had a dOA of 0.5 m and an ACR of 10 m. As expected,
the motion of uniform attraction is less influenced by outlier
robots far from the swarm than CM attract.

For each of the two behaviors, 100 simulations were per-
formed using 15 robots, an ACR of 50 m, and a dOA of 5 m for
1000 s. For each simulation, three parameters were calculated:
1) The average final distance between the robots to the CM, 2)
the maximum final distance between a robot and the CM, and
3) the minimum final distance between the robots.

The mean over 100 trials of the average distances to the
CM was 6.869 m (SD = 0.074 m) for uniform attraction and
6.878 m (SD = 0.084 m) for CM attraction, indicating that
both behaviors have robots converging together. Next, the mean
maximum distance to the CM for the 100 trials was 10.145 m (SD
= 0.357 m) for uniform attract and 10.139 m (SD = 0.336 m)
for CM attract. This indicates that for both behaviors, the robot
furthest from the CM in each simulation was not too far away
from the overall swarm. Finally, the mean minimum distance
between a pair of robots was 4.988 m (SD = 0.003 m) for both
uniform and CM attraction, which indicates that the obstacle
avoidance function is performing nominally. Overall, these three
analyses indicate that both behaviors result in good clustering
for an appropriate ACR while honoring the obstacle avoidance
function.

Fig. 4. Uniform disperse for n = 1, (a) trajectory. (b) final positions and
boundaries.

B. Nearest n Neighbor Weighting Function

The coverage problem of evenly distributing robots through
space has been extensively studied. While there are various
methods in the literature, this work uses the simple yet effective
version presented in [15]. Nearest n neighbor dispersion is
dispersing from n closest neighbors. Changing the number of
neighbors a robot disperses from will give different results.
Dispersing from the one or two closest neighbors will give good
coverage of the space, while dispersing from all neighbors will
push the robots to the boundaries of the space. The distance
to robot i’s nth closest neighbor is denoted as dñ, then the
weighting function for the n-nearest neighbor attraction is given
in (15). Coupled with θb = 180 deg, (15) becomes a disperse
behavior.

fñ(i, j) = [[dij ≤ dñ]]dijI2. (15)

The simulated results use n = 1 for 20 robots with a dOA

of 0.25 m and an ACR of 10 m. The trajectories are presented
in Fig. 4(a) with robots starting at random initial conditions. As
expected, the robots move to distribute evenly through the space.

Authorized licensed use limited to: Santa Clara University. Downloaded on June 25,2024 at 15:04:35 UTC from IEEE Xplore. Restrictions apply.

878 IEEE/ASME TRANSACTIONS ON MECHATRONICS, VOL. 28, NO. 2, APRIL 2023

Fig. 5. Uniform ring attraction with a = 1 m and N = 15 trajectory.

An artificial boundary confined the motion of the robots to avoid
the robots dispersing infinitely. Fig. 4(b) shows this boundary
along with the final positions of the robots.

In 100 simulations, 20 robots were simulated for 500 s with
random initial conditions in a 10 m by 10 m area. The robots
had a dOA of 0.25 m and an ACR of 10 m. In these simulations,
all robots converged to be inside the desired boundary. Over the
100 simulations, the mean minimum distance between robots
was 0.991 m (SD = 0.019 m), indicating that the robots were
distributing through the space using fñ instead of obstacle
avoidance. These results agree with those found in [15].

C. Ring Attract Weighting Function

Another useful behavior is attracting until each robot is a
distance a away from the local CM. Ring attraction uses the
weighting function in (16) with θd = 0 deg. Here di,cm is the
distance robot i is from the local CM.

fring(i, j) = (di,cm − a)I2. (16)

A simulation of this attract behavior is presented for 15 robots
moving to a circle with a radius of 1 m. The simulation uses an
ACR of 50 m and a dOA of 0.25 m. The trajectories for this
simulation are presented in Fig. 5 with robots starting at random
initial conditions. All the robots move to be 1 m away from the
CM. However, the robots did not uniformly distribute around
the circle.

In a simulation of 100 trials, 10 robots were commanded to
a circle of radius 1 m. Robots had a dOA of 0.25 m and an
ACR of 50 m. Robots started in random conditions in a 40 m
by 40 m area. The performance parameters were calculated at
the end of the simulation. First, the mean minimum distance
between robots was 0.260 m (SD = 0.007 m), indicating the
obstacle avoidance function was determining the robot spacing
on the circle. Second, the mean average distance to the CM was
1.000 m (SD = 0.002 m). This result indicates that the swarm
accurately reached the desired ring radius. Finally, the mean
maximum distance to the CM was 1.009 m (SD = 0.001 m),
indicating that all robots converged well to the circle.

D. Elliptical Weighting Function

In some cases, it is useful for the robots to attract in an elliptical
shape with a preferential direction of elongation as in [23]. This
case study presents two versions of elliptical weighting, 1) where
the orientation of the ellipse is given, and 2) where swarm robot
positions determine the direction of elongation. Both versions
use θb = 0 deg.

1) Elliptical Weighting for Given Orientation: Assume that
the angle that the semi-major axis of the desired ellipse makes
with the x-axis is given as φ . Then, the weighting function for
elliptical weighting can be expressed as follows:

fellipse(i, j) =
dij
N

(αM + βI2) (17)

M =

[
− cos 2φ − sin 2φ

− sin 2φ cos 2φ

]
. (18)

The second term in (17) attracts the robots toward the CM
while the first term disperses along a line through the CM with
an angle of φ to the x-axis. The CM attraction term keeps the
robots from infinitely dispersing along that line. The terms α
and β control how eccentric the resulting swarm is, requiring
that α+ β = 1. As β increases, the robots will aggregate into
less eccentric shapes. Note for stability β ≥ α is required.

2) Elliptical Attract Without Given Orientation: If a preferen-
tial direction φ is not provided, φ can be determined by the
robot using the angle between the vector pointing to its furthest
neighbor and the x-axis. Then, (17) can be used as before to
weight the robots elliptically.

φ = arctan

(
yj_furthest − yi
xj_furthest − xi

)
. (19)

This case study presents three hardware trials for an elliptical
attraction without a given φ. Each trial uses 10 robots, a dOA

of 0.3 m, and an ACR of 50 m. Robots start at the same initial
conditions for each trial. The three trials use three different pairs
of α and β: 1) α = 0.5 and β = 0.5, 2) α = 0.45 and β = 0.55,
and 3) α = 0.4 and β = 0.6. Fig. 6 presents the trajectories for
the three case studies. The eccentricities of the final positions,
calculated using a bounding ellipse, were 1, 0.9238, and 0.6663,
respectively. As expected, the robots assembled into a line when
α and β were equal. Then as β increased, the CM attraction
was stronger, resulting in less eccentric shapes. Since φ was not
defined, the ellipses were orientated arbitrarily.

In 100 simulations, 10 robots were simulated for 5000 s with
an ACR of 50 m and a dOA of 0.3 m. Robots started with random
initial conditions in a 40 m by 40 m area. Three values of α
were used: 0.1, 0.3, and 0.45. The eccentricity of the final swarm
position was determined using a bounding ellipse. The mean and
SD for eccentricity were 1) for α = 0.1, 0.585 (SD = 0.067),
2) for α = 0.3, 0.739 (SD = 0.112), and 3) for α = 0.45, 0.915
(SD = 0.017).

A one-way ANOVA revealed that there was a statistically
significant difference in the mean eccentricity for at least two
groups [F (2, 297) = 471.742, p < 0.0001]. All p-values for the
post hoc comparisons were less than 0.0001, indicating that
these distributions are different, as expected. The larger the
value of α, the more eccentric the resulting ellipse. However,
for a given α, there is significant variation in the eccentricities
of the resulting ellipse. The elliptical attract behavior found in
[23] uses formation control to achieve coverage over an ellipse
with specified parameters. While our formulation does not need
formation control for coverage, it does have less control over the
eccentricities of the resulting ellipse. Future work will develop
algorithms that yield less variable properties of the ellipse.

Authorized licensed use limited to: Santa Clara University. Downloaded on June 25,2024 at 15:04:35 UTC from IEEE Xplore. Restrictions apply.

HART AND KITTS: UNIFYING CONTROL ARCHITECTURE FOR REACTIVE PARTICLE SWARMS 879

Fig. 6. Trajectories for elliptical attract with (a) α = 0.5, β = 0.5; (b) α = 0.45, β = 0.55; and (c) α = 0.4, β = 0.6.

Fig. 7. Formation maintenance case study. (a) Trajectory in the global
coordinate system. (b) Comparison of final and desired positions in the
formation coordinate system.

E. Formation Maintenance Weighting Function

The next case study presents formation maintenance, keeping
the robots in an already achieved formation. Pure formation
maintenance consists of one attract behavior, θb = 0 deg, as
described in (20), where sij is the desired distance between two
robots in the formation [24]. While this case study, using the
formulation in [13], presents successful formation acquisition,
local minimums prevent global convergence to the desired for-
mation [13]. Therefore, this formulation is much more valuable
for formation maintenance than formation acquisition.

fform(i, j) = (dij − sij)I2. (20)

In this case study, formation maintenance commands 12
robots to a chevron formation represented as the red x’s in
Fig. 7(b). Fig. 7(b) shows the robots in the formation coordinate
system. This system uses axesx′ and y′ centered at the peak robot
with the y-axis parallel to the vector pointing from the center
robot at coordinates [0,−2] to the peak robot. The simulated
robots have an ACR of 10 m and a dOA of 0.1 m and start with
random initial conditions. Fig. 7(a) presents the time history

Fig. 8. Swarm trajectory for universal orbit case study.

for the swarm representing the final positions of the robots
as back circles. By transforming these final coordinates into
the formation coordinate system and overlaying the desired
formation as in Fig. 7(b), it is clear that the robots achieve close
to the desired formation.

Formation maintenance was simulated using 12 robots, an
ACR of 10 m, a dOA of 0.1 m, and random initial conditions in
a 40 m by 40 m area for 1000 s. At the end of each simulation,
the maximum absolute error in the desired distances between
robots was determined. For the 100 simulations, the mean of
the maximum absolute error was 0.73% (SD = 0.17%), which
indicates very good formation maintenance. This error is due
to the constant velocity used in SBS. There were six outlier
simulations. The mean absolute error of the outliers was 1.32%
(SD = 0.0294%). These outliers correspond to initial conditions
that failed to converge to the desired formation.

V. BASE BEHAVIOR CASE STUDIES WITH θb = 90 OR

270 deg

This section explores how weighting functions perform when
coupled with θb = 90 or 270 deg, creating orbit or side-slipping
behaviors.

A. Uniform and CM Weighting Functions

Just as (9) and (10) attract toward the CM or uniformly when
paired with θb = 0 deg, the equations can orbit the CM or the
average unit vector when paired with θb = 90 or 270 deg. In this
case study, 10 robots perform a uniform orbit behavior using (10)
and θb = 90 deg. The simulated robots have a sensor range of
300 m and a dOA of 0.5 m. The time history shown in Fig. 8 has
random initial conditions. Here the robots rotate in a clockwise

Authorized licensed use limited to: Santa Clara University. Downloaded on June 25,2024 at 15:04:35 UTC from IEEE Xplore. Restrictions apply.

880 IEEE/ASME TRANSACTIONS ON MECHATRONICS, VOL. 28, NO. 2, APRIL 2023

Fig. 9. Swarm trajectory for ring orbit case study.

manner around the average unit vector. If θb was 270 deg, the
robots would orbit counter-clockwise. Since the performance
of these behaviors was already demonstrated in the previous
section, no batch simulations were performed.

B. Ring Attract Weighting Function

The next case study examines using the ring weighting func-
tion as in (16) with θb = 90 deg. A radius of 15 m is set for
the ring. The simulation of 19 robots over 75 seconds uses an
ACR of 300 m and a dOA of 1 m. The robots were given initial
conditions with one robot at the CM, six robots evenly spaced
on a circle with a radius of 10 m, six robots on a circle of radius
17.32 m, and six robots on a circle of radius 20 m. The robots
were nicely distributed to make a planar lattice to more easily
demonstrate the behavior.

The trajectory for the simulation is plotted in Fig. 9. The
square is the CM of the robots, and the dashed line shows a circle
of radius 15 m centered at the CM. The robots less than 15 m all
have reference vectors �vri pointing away from the CM. There-
fore, as expected, these robots orbit the CM counter-clockwise
for θb = 90 deg. Conversely, robots more than 15 m from the
CM have reference vectors pointing toward the CM, resulting in
a clockwise rotation about the CM. No batch simulations were
performed since the performance of fring was demonstrated in
the previous section.

C. Elliptical Weighting Function

Elliptical orbiting uses the same weighting function described
in (17) but with θb = 270 deg. Three simulations are presented
using elliptical orbiting with φ = 45 deg. All trials have 10
robots with an ACR of 50 m and a dOA of 0.1 m. These
three simulations have the same robot initial conditions but use
three different sets of α and β: 1) α = 0.45, β = 0.55, 2)
α = 0.4, β = 0.6, and 3) α = 0.3, β = 0.7. The resulting
trajectories are presented in Fig. 10. As expected, the robots all
orbit in a counter-clockwise manner. Visual inspection shows
that as β increases, the eccentricities of the orbits decrease.
Barnes et al. [25] demonstrated a similar orbiting behavior with
a different formulation.

Next, 100 simulations were run for five different versions
of elliptical orbit. Ten robots were simulated with an ACR of
50 m, a dOA of 0.1 m, and a φ of 45 deg. Robots started with
random initial conditions in a 40 m by 40 m area, and the
simulation lasted 1000 s. For each simulation, a bounding ellipse

TABLE III
MEAN AND SD FOR ORIENTATION AND ECCENTRICITY FOR THE FIVE TYPES

OF ELLIPTICAL ORBIT SIMULATIONS

TABLE IV
TUKEY–KRAMER POST HOC COMPARISON p-VALUES FOR ELLIPTICAL

ORBITING ANGLE DISTRIBUTIONS

determined the eccentricity and orientation of the trajectories.
Five different values of α were used: 0.1, 0.2, 0.3, 0.4, and 0.45.

Table III presents the mean and SD of the trajectory eccentric-
ities for each α. The one-way ANOVA test indicated that there
was at least one distribution of eccentricities that was statisti-
cally significantly different [F (4, 495) = 2542.5, p < 0.0001].
All pairs of p-values for the Tukey–Kramer test are less than
0.0001. Therefore, higher values of α yield more eccentric
ellipses, as expected.

Next, Table III lists the mean and SD for the angle φ. The one-
way ANOVA indicated that at least one distribution of angles was
different [F (4, 495) = 5.180, p < 0.0001]. Table IV presents
the p-values for the post hoc comparisons. From this analysis,
only the distribution of angles with an α of 0.1 significantly
differs from the others. This makes sense because at low values
of α, the ellipse is much more circular, leading to larger errors
when the bounding ellipse calculates the angle. All other groups
have distributions that agree well with the prescribed 45◦ angle.
But overall, for elliptical orbiting, there is good adherence for
the angle φ, and higher values of α give more eccentric shapes.

VI. COMPOSITE BEHAVIOR CASE STUDIES

This section demonstrates how to design composite behaviors
and how scaling constants selection leads to different perfor-
mances.

A. Composite Case Study: Uniformly Spaced Ring

Section IV-C presented a base behavior that drove the robots to
a nonuniform spacing on a ring of radius a. To have the robots
uniformly distributed, we present a composite behavior with
two base behaviors: 1) Ring attract as in (16) with θring = 0 deg,
and 2) nearest n neighbor disperse as in (15), with n = 1 and
θñ = 180 deg. Because the dominant behavior should be driving
to the ring, then kb_ring = 0.9 and kb_ñ = 0.1.

Authorized licensed use limited to: Santa Clara University. Downloaded on June 25,2024 at 15:04:35 UTC from IEEE Xplore. Restrictions apply.

HART AND KITTS: UNIFYING CONTROL ARCHITECTURE FOR REACTIVE PARTICLE SWARMS 881

Fig. 10. Trajectories for elliptical orbit with (a) α = 0.45, β = 0.55; (b) α = 0.4, β = 0.6; and (c) α = 0.3, β = 0.7.

Fig. 11. Uniform ring attraction with a = 1 m and N = 10 trajectory.

In this hardware trial, 10 robots attract to a ring with a radius
of 1 m with an ACR of 50 m and a dOA of 0.25 m. Fig. 11 plots
the robot trajectories. The distances between robots converge
to the expected chord lengths for uniformly distributed robots,
indicating successful uniform ring attraction.

In 100 uniform ring simulations, ten robots were commanded
to a circle of radius 1 m. The initial conditions were randomly
spaced throughout a 40 m by 40 m area. Each simulation was
1000 s, and the robots used an ACR of 50 m and a dOA of 0.25 m.
Then the following parameters were determined at the end of
the simulation. The average minimum distance between robots
was 0.614 m (SD = 0.002 m). This distribution is significantly
different from the minimum distance distribution for the pure
ring attraction behavior [t(99) = −496.64, p < 0.0001]. This
indicates that the dispersion behavior, fñ, was controlling the
spacing of the robots, not the obstacle avoidance function. Next,
the mean of the average distance to the CM was calculated as
1.001 m (SD = 0.002 m). The mean of this distribution is statis-
tically different from the mean for pure ring attraction, [t(99) =
−2.610, p = 0.0105]. The mean of the maximum distances to
the CM was 1.008 m (SD = 0.002 m). The mean of the distribu-
tion of maximum distances to the CM is significantly higher than
that for pure ring attraction [t(99) = 3.574, p < 0.0001]. The
previous two statistics indicate that the uniform ring attraction
works less well at achieving the ring attraction. Since the uniform
ring behavior has the addition of another behavior over pure ring
attraction, this slight degradation in performance was expected.
From a practical standpoint, however, uniform ring attraction
still performs the desired attraction to the ring very well.

There are five unique chord lengths for 10 nodes equally
spaced on a circle. The maximum percent error of the average
of each unique chord length was 0.075%, indicating that the
robots equally dispersed along the circle, as claimed. Barnes

et al. [25] present a similar behavior of uniformly spacing along
a ring, although with a different formulation. Their control uses
artificial potential fields and limiting functions to move to the
ring and an additional control law to space the robots along it. We
achieve similar results with a more straightforward formulation
and without limiting functions.

B. Composite Case Study: Simple Flocking

Flocking is a prevalent swarm behavior and has been exten-
sively studied [26]. For RPS, simple flocking breaks down into
two behaviors: 1) An attract behavior using CM weighting as
in (9) with θCM = 0 deg, and 2) go-to coordinates, an external
input. Equation (21) expresses the control input for go-to coor-
dinates in terms of the position of robot i, �xi, and the desired
coordinates �rc.

�uu_GoTo_i = �rc − �xi. (21)

To demonstrate how the selection of the scaling constants
kb_CM and ku_GoTo changes the swarm’s behavior, we present
three versions of flocking: 1) kb_CM = 0.1, 2) kb_CM = 0.25,
and 3) kb_CM = 0.5. The robots start at the same random initial
conditions for each hardware trial with go-to coordinates of�rc =
[2 0.5]T . Each hardware trial lasts for 120 s, and the robots
have an ACR of 10 m and a dOA of 0.25 m. Fig. 12 shows the
trajectories for the three experimental trials. As kb_CM increases,
the clustering of the robots happens more quickly, impeding the
motion toward the go-to coordinates.

Then, 100 simulations of three types of flocking were per-
formed: 1) Medium attraction kb_CM = 0.3, 2) strong attrac-
tion kb_CM = 0.5, and 3) dominant attraction kb_CM = 0.7. Ten
robots started at random initial conditions in a 10 m by 10 m area
and used an ACR of 20 m and a dOA of 0.25 m. The simulations
were 5000 s long. The target coordinates were [10 m, 5 m]. Two
statistics were determined for each simulation. First, the first
time the CM of the swarm reaches within half the dOA of the
target coordinates was determined. Once the swarm gets close
to the target, it can take a while for the CM converges to the
target coordinates as robots settle without overall movement of
the swarm. Using half the dOA removes the effect of this settling.
Second, the first time all robots were within twice the dOA was
determined for each simulation. This was chosen because a
similar number of robots converged to be within about twice
the dOA in the CM case study.

Authorized licensed use limited to: Santa Clara University. Downloaded on June 25,2024 at 15:04:35 UTC from IEEE Xplore. Restrictions apply.

882 IEEE/ASME TRANSACTIONS ON MECHATRONICS, VOL. 28, NO. 2, APRIL 2023

Fig. 12. Trajectory for 10 robots flocking with (a) kb_CM = 0.1, (b) kb_CM = 0.25, and (c) kb_CM = 0.5.

TABLE V
MEAN AND SD FOR CM CONVERGENCE TIME AND GOAL CONVERGENCE

TIME FOR THE THREE TYPES OF FLOCKING SIMULATIONS

TABLE VI
LIBRARY OF BASE BEHAVIORS FROM THIS ARTICLE AND SOURCES IF

APPLICABLE

The mean and SD for target convergence time and goal
convergence time are specified in Table V. The p-value for the
one-way ANOVA for goal convergence time is less than 0.0001,
[F (2, 297) = 3146, p < 0.0001], and the pairwise p-values for
the Tukey–Kramer test are all less than 0.0001. Therefore, as
kb_cm increases, the swarm takes longer to reach the goal. The
p-value for the one-way ANOVA for CM convergence time
is less than 0.0001, [F (2, 297) = 4190, p < 0.0001], and the
pairwise p-values for the Tukey–Kramer test are all less than
0.0001. Therefore, as kb_cm increases, the swarm more rapidly
converges to the CM. This example demonstrates how different
selection of scaling constants changes the motion of the swarm.

VII. DISCUSSION

The presented case studies demonstrate the flexibility of the
control architecture. Different weighting functions, fb, calcu-
late different reference vectors. The robot’s motion relative to
the reference vector is manipulated by changing θb, leading
to the different base behaviors. Changing the values of the
scaling constants, kb and ku, emphasizes certain base behaviors,
changing the performance of the composite behavior. Table VI
summarizes the base behaviors presented in this article. This

library includes multiple versions of stable aggregation, one
coverage behavior, one formation maintenance behavior, and
several orbiting behaviors. The only main area of RPS behavior
that this work does not cover is gradient estimation for source
seeking, which will be included in future work.

Finally, let us compare this novel RPS architecture with Mes-
bahi and Egerstedt’s architecture in [16]. Mesbahi and Egerst-
edt’s formulation calculates for a single-behavior weighted sum
of relative position vectors using a weighting function. Their
weighing functions calculate positive scalars that are a func-
tion of the position between robots. Our formulation relaxes
these requirements. A weighting function, fb(i, j), calculates a
weighting matrix using the swarm state, robot sensor reading,
and similar information. Not only can the weights be negative,
but the weighting matrix allows for more complicated linear
transformations. The introduction of K(θb) allows for orbit
behaviors, which are impossible in Mesbahi and Egerstedt’s
work. Our composite behaviors design allows for multiple active
behaviors, while theirs does not. Therefore, our formulation is
more generalized and extensible. Mesbahi and Egerstedt [16]
also make several assumptions about the graph’s connectivity
that, coupled with Lyapunov stability analysis, leads to a sta-
bility analysis. Because our work relaxes these requirements, a
stability analysis for behaviors is not currently available.

VIII. CONCLUSION

In the field of RPSs, there lacks a unifying set of control
equations even though the overall mathematical equations in
each article are very similar. This article’s main contribution
presents a unifying mathematical control architecture for RPS,
which streamlines the development of the control laws for base
behaviors. As a second contribution, a series of simulated and
hardware-in-the-loop case studies demonstrate the flexibility
of these equations. These studies demonstrate how to design
composite behaviors swiftly by combining base behaviors. The
article’s third contribution is establishing a library of verified
RPS base behaviors. Future work will develop more complex
weighting functions, investigate using other values of θb, and
demonstrate more complicated composite behaviors. Additional
work will also develop better heuristics or automated methods
for selecting scaling constants, investigate the stability of the
base and composite behaviors, and explore nonlinear or time-
varying scaling constants.

Authorized licensed use limited to: Santa Clara University. Downloaded on June 25,2024 at 15:04:35 UTC from IEEE Xplore. Restrictions apply.

HART AND KITTS: UNIFYING CONTROL ARCHITECTURE FOR REACTIVE PARTICLE SWARMS 883

REFERENCES

[1] L. Iocchi, D. Nardi, and M. Salerno, Reactivity and Deliberation: A
Survey on Multi-Robot Systems, Ser. Lecture Notes in Computer Science,
vol. 2103, Berlin, Germany: Springer, 2001, pp. 9–32.

[2] Y. Leng, C. Yu, W. Zhang, Y. Zhang, X. He, and W. Zhou, “Task-oriented
hierarchical control architecture for swarm robotic system,” Natural Com-
put., vol. 16, no. 4, pp. 579–596, Dec. 2017.

[3] L. Bayindir and E. Sahin, “A review of studies in swarm robotics,” Turkish
J. Elect. Eng. Comput. Sci., vol. 15, pp. 115–147, 2007.

[4] K. Priya, “A concise chronological reassess of different swarm intelligence
methods with multi robotics approach,” ICTAC J. Soft Comput., vol. 9,
no. 2, pp. 1874–1879, Jan. 2019.

[5] P. Ghassemi and S. Chowdhury, “Informative path planning with local
penalization for decentralized and asynchronous swarm robotic search,”
in Proc. Int. Symp. Multi-Robot Multi-Agent Syst., 2019, pp. 188–194.

[6] I. Navarro and F. Matía, “An introduction to swarm robotics,” ISRN Robot.,
vol. 2013, 2013, Art. no. 608164. doi: 10.5402/2013/608164.

[7] T. Li, H.-S. Shin, and A. Tsourdos, “Efficient decentralized task allocation
for UAV swarms in multi-target surveillance missions,” in Proc. Int. Conf.
Unmanned Aircr. Syst., 2019, pp. 61–68.

[8] M. A. Lewkowicz, R. Agarwal, and N. Chakraborty, “Distributed algo-
rithm for selecting leaders for supervisory robotic swarm control,” in Proc.
Int. Symp. Multi-Robot Multi-Agent Syst., 2019, pp. 112–118.

[9] S. Avrahami and N. Agmon, “The robotic swarm contamination problem,”
in Proc. Int. Symp. Multi-Robot Multi-Agent Syst., Aug. 2019, pp. 119–125.

[10] L. Brinón-Arranz, A. Seuret, and C. Canudas-de Wit, “Collaborative esti-
mation of gradient direction by a formation of UAVs under communication
constraints,” Proc. IEEE Conf. Decis. Control, 2011, pp. 5583–5588.

[11] M. S. Couceiro, R. P. Rocha, and N. M. F. Ferreira, “A novel multi-robot
exploration approach based on particle swarm optimization algorithms,”
in Proc. IEEE Int. Symp. Safety, Secur., Rescue Robot., 2011, pp. 327–332.

[12] H. Yamaguchi, “A cooperative hunting behavior by mobile robot troops,”
in Proc. IEEE Int. Conf. Robot. Automat., 1998, pp. 3204–3209.

[13] V. Gazi and K. Passino, “A class of attraction/repulsion functions for stable
swarm aggregations,” Int. J. Control, vol. 77, pp. 2842–2847 , 2003.

[14] L. Hou, F. Fan, J. Fu, and J. Wang, “Time-varying algorithm for swarm
robotics,” IEEE/CAA J. Automatica Sinica, vol. 5, no. 1, pp. 217–222,
Jan. 2018.

[15] J. D. McLurkin, “Stupid robot tricks: A behavior-based distributed algo-
rithm library for programming swarms of robots,” Ph.D. dissertation, Dept.
Elect. Eng. Comput. Sci., Massachusetts Inst. Technol., 2004.

[16] M. Mesbahi and M. Egerstedt, Graph Theoretic Methods in Multiagent
Networks, stu - student edition ed. Princeton, NJ, USA: Princeton Univ.
Press, 2010.

[17] S. Li, R. Kong, and Y. Guo, “Cooperative distributed source seeking
by multiple robots: Algorithms and experiments,” IEEE/ASME Trans.
Mechatronics, vol. 19, no. 6, pp. 1810–1820, Dec. 2014.

[18] E. Rosero and H. Werner, “Cooperative source seeking via gradient
estimation and formation control (part 1),” in Proc. UKACC Int. Conf.
Control, 2014, pp. 628–633.

[19] M. Ji and M. Egerstedt, “Distributed formation control while preserv-
ing connectedness,” in Proc. 45th IEEE Conf. Decis. Control, 2006,
pp. 5962–5967.

[20] P. Glotfelter, I. Buckley, and M. Egerstedt, “Hybrid nonsmooth barrier
functions with applications to provably safe and composable collision
avoidance for robotic systems,” IEEE Robot. Automat. Lett., vol. 4, no. 2,
pp. 1303–1310, Apr. 2019.

[21] S. Hart, N. Metzger, M. Reese, R. McDonald, M. Neumann, and C.
Kitts, “Robotics simulator for development and verification of swarm
behaviors,” in Proc. Int. Des. Eng. Techn. Conf. Comput. Inf. Eng. Conf.,
2019. doi: 10.1115/DETC2019-97622.

[22] S. Tomer et al., “A low-cost indoor testbed for multirobot adaptive navi-
gation research,” in Proc. IEEE Aerosp. Conf., 2018, pp. 1–12.

[23] D. Roy, A. Chowdhury, M. Maitra, and S. Bhattacharya, “Geometric
region-based swarm robotics path planning in an unknown occluded
environment,” IEEE Trans. Ind. Electron., vol. 68, no. 7, pp. 6053–6063,
Jul. 2021.

[24] V. Gazi, B. Fidan, L. Marques, and R. Ordonez, “Robot swarms: Dynamics
and control,” in Mobile Robots for Dynamic Environments, New York, NY,
USA: ASME Press, 2015. doi: 10.1115/1.860526_ch4.

[25] L. Barnes, M. Fields, and K. Valavanis, “Swarm formation control utilizing
elliptical surfaces and limiting functions,” IEEE Trans. Syst. Man Cybern.
Part B Cybern., vol. 39, no. 6, pp. 1434–1445, Dec. 2009.

[26] C. W. Reynolds, “Flocks, herds and schools: A distributed behavioral
model,” ACM SIGGRAPH Comput. Graph., vol. 21, no. 4, pp. 25–34,
Aug. 1987.

Shae T. Hart (Graduate Student Member, IEEE)
received the B.S. degree in physics, in 2016,
from Carnegie Mellon University, Pittsburgh, PA,
USA, and the M.S. degree in mechanical engi-
neering, in 2019, from Santa Clara University,
Santa Clara, CA, USA, where she is currently
working toward the Ph.D. degree in mechanical
engineering.

She was a Teaching Assistant with the De-
partment of Mechanical Engineering and a Re-
search Assistant with Robotic Systems Labora-

tory, Santa Clara University.

Christopher A. Kitts (Senior Member, IEEE)
received the B.S.E. degree in mechanical and
aerospace engineering from Princeton Univer-
sity, Princeton, NJ, USA, in 1987, the M.P.A.
degree in international and defense policy from
the University of Colorado, Boulder, CO, USA,
in 1996, and the M.S. degree in aerospace en-
gineering and the Ph.D. degree in mechanical
engineering from Stanford University, Stanford,
CA, USA, in 2006 and 1992, respectively.

He was a Satellite Constellation Mission Con-
troller with U.S. Air Force and a Computer Scientist with Computational
Sciences Division, NASA Ames Research Center. He is currently a Pro-
fessor of mechanical engineering, the Director of the Robotic Systems
Laboratory, and the Associate Dean of the Research and Interdisci-
plinary Programs with the School of Engineering, Santa Clara University,
Santa Clara, CA, USA.

Dr. Kitts is a fellow of the American Society of Mechanical Engineers.

Authorized licensed use limited to: Santa Clara University. Downloaded on June 25,2024 at 15:04:35 UTC from IEEE Xplore. Restrictions apply.

https://dx.doi.org/10.5402/2013/608164
https://dx.doi.org/10.1115/DETC2019-97622
https://dx.doi.org/10.1115/1.860526_ch4

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

